
Coherent Reaction

Jonathan Edwards
MIT Computer Science and Artificial Intelligence Lab

edwards@csail.mit.edu

Abstract
Side effects are both the essence and bane of imperative pro-
gramming. The programmer must carefully coordinate ac-
tions to manage their side effects upon each other. Such co-
ordination is complex, error-prone, and fragile. Coherent re-
action is a new model of change-driven computation that co-
ordinates effects automatically. State changes trigger events
called reactions that in turn change other states. A coherent
execution order is one in which each reaction executes be-
fore any others that are affected by its changes. A coherent
order is discovered iteratively by detecting incoherencies as
they occur and backtracking their effects. Unlike alternative
solutions, much of the power of imperative programming is
retained, as is the common sense notion of mutable state.
Automatically coordinating actions lets the programmer ex-
press what to do, not when to do it.

Coherent reactions are embodied in the Coherence lan-
guage, which is specialized for interactive applications like
those common on the desktop and web. The fundamental
building block of Coherence is the dynamically typed muta-
ble tree. The fundamental abstraction mechanism is the vir-
tual tree, whose value is lazily computed, and whose behav-
ior is generated by coherent reactions.

Categories and Subject Descriptors D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.1.3
[Programming Techniques]: Concurrent Programming; F.1.2
[Computation by Abstract Devices]: Modes of Computation—
Interactive and reactive computation

General Terms Languages

Keywords interactive systems, reactive systems, synchronous
reactive programming, functional reactive programming,
bidirectional functions, trees

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-768-4/09/10. . . $10.00

1. Introduction
I see no reasonable solution that would allow a paper
presenting a radically new way of working to be ac-
cepted, unless that way of working were proven better,
at least in a small domain. – Mark Wegman, What it’s
like to be a POPL referee [28]

This paper presents a new kind of programming language
and illustrates its benefits in the domain of interactive ap-
plications (such as word processors or commercial web
sites). The fundamental problem being addressed is that of
side effects, specifically the difficulties of coordinating side
effects.

Coordinating side effects is the crux of imperative pro-
gramming, the style of all mainstream languages. Imperative
programming gives the power to change anything anytime,
but also imposes the responsibility to deal with the conse-
quences. It is the programmer’s responsibility to order all
actions so that their side effects upon each other are correct.
Yet it is not always clear exactly how actions affect each
other, nor how those interdependencies might change in the
future.

Coordinating side effects is a major problem for inter-
active applications, for two reasons. Firstly, interaction is a
side effect. The whole purpose of user input is to change
the persistent state of the application. The issue can not be
side-stepped. Secondly, the size and complexity of modern
applications demands a modular architecture, such as Model
View Controller (MVC) [26] and its descendants. But coor-
dination of side effects inherently cross-cuts modules, lead-
ing to much complexity and fragility.

A common example is that of a model constraint that
ensures multiple fields have compatible values. If a view
event, say submitting a form, changes two of those fields,
it is necessary that they both change before the constraint
is checked. Otherwise the constraint might falsely report
an error. There are many common workarounds for this
problem, none of them entirely satisfactory.

In the MVC architecture it falls to the controller to coor-
dinate change. One approach to the example problem is to
defer checking the constraint until after all relevant changes
have been made. This erodes modularity, for now the model
must publish all its constraints and specify what fields they

depend upon, limiting the freedom to changes such internals.
Even still it may not be obvious to the Controller what im-
plicitly called methods may changes those fields, so it can
not be sure when to call the check. It could defer all checks
till the very end. But that presumes that the code is itself
never called by other code, again eroding modularity. The
difficulty of modularizing MVC controllers has been dis-
cussed by others. [3, 17, 24]

Another approach, no more satisfactory, is to have the
model publish special methods that bundle the changes to
all constraint-related fields into a single call. Once again
this defeats modularity, for the model is exposing its internal
semantics, limiting the freedom to change them. Worse, the
controller is given the impossible task of accumulating all
changes to the relevant fields, made anywhere in the code it
calls, so that it can change them atomically.

Modern application frameworks employ an event-driven
publish/subscribe model to respond to input more modlarly.
Event handlers can subscribe to be called back whenever an
event is published. The subscribers and publishers need not
know of each other’s existence. This approach eliminates
many hard-wired interdependencies that obstruct modular-
ity, but does not solve the example problem. The constraint
can not subscribe to changes on the involved fields, for it
will be triggered as soon as the first one changes. One re-
sponse is to queue up the constraint checks to be executed in
a separate phase following all the model change events. The
popular web framework JavaServer Faces [4] defines ten dif-
ferent phases.

Phasing is an ad hoc solution that works only for pre-
conceived classes of coordination problems. Unfortunately
event-driven programming can create more coordination
problems than it solves. The precise order of interrelated
event firings is often undocumented, and so context-dependent
that it can defy documentation.1 You don’t know when you
will be called back by your subscriptions, what callbacks
have already been called, what callbacks will be subse-
quently called, and what callbacks will be triggered implic-
itly within your callback. Coordinating changes to commu-
nal state amidst this chaos can be baffling, and is far from
modular. The colloquial description is Callback Hell.

An analysis [21] of Adobe’s desktop applications indi-
cated that event handling logic comprised a third of the code
and contained half of the reported bugs.

The difficulties of event coordination are just one of the
more painful symptoms of the disease of unconstrained
global side effects. It has long been observed that global
side effects destroy both referential transparency [19] and
behavioral composition [16]. Unfortunately, attempts to ban-
ish side effects from programming languages have required

1 For example, when the mouse moves from one control to another, does the
mouseLeave event fire on the first before the mouseEnter event fires on the
second? Does your GUI framework document that this order is guaranteed?
The order is seemingly random in one popular framework.

significant compromises, as discussed in the Related Work
section.

The primary contribution of this paper is coherent re-
action, a new model of change-driven computation that con-
strains and coordinates side effects automatically. The key
idea is to find an ordering of all events (called reactions)
that is coherent, meaning that each reaction is executed be-
fore all others that it has any side effects upon. Coherent
ordering is undecidable in general. It can be found with a
dynamic search that detects incoherencies (side effects on
previously executed reactions) as they occur. All the effects
of a prematurely executed reaction are rolled back, as in a
database transaction, and it is reexecuted later. From the pro-
grammer’s point of view, coordination becomes automatic.
The programmer can concentrate on saying what to do, not
when to do it. Coherent reaction is discussed in more detail
in the next section.

The Coherence programming language uses coherent re-
actions to build interactive applications. The fundamental
building block of the language is the dynamically typed mu-
table tree. The key idea is that abstraction is provided by
virtual trees, whose values are lazily computed, and whose
behaviors are generated by coherent reactions. Further de-
tails can be found in the full version [11] of this paper.

2. Coherent Reaction
This section explains coherent reaction in the simple setting
of a Read Eval Print Loop (REPL). Programmer input is
prefixed with a >, the printed value of inputs with a =, and
program output with a <. Printed values will be omitted
when they do not further the discussion.

1 > task1: {
2 name: ”task1”,
3 start: 1,
4 length: 2,
5 end = Sum(start, length)}
6 = {name: ”task1”, start: 1, length: 2, end: 3}
7 > task1.start := 2
8 > task1
9 = {name: ”task1”, start: 2, length: 2, end: 4}

Lines 1–5 define the variable task1 to be a structure contain-
ing the fields within the curly braces. This structure is meant
to represent a task in some planning application, and has a
starting time and length defined in the fields start and length.
For simplicity these fields are given plain numeric values
rather a special time datatype. Variables and fields are dy-
namically typed.

The field end is defined on line 5 as the total of the start and
length fields using the Sum function. (Functions are capital-
ized by convention. Traditional infix mathematical notation
can be supported, but will not be used in this paper.) The end

field is said to be derived, indicated by defining it with an
equals sign instead of a colon, followed by an expression to
calculate the value. The value of task1 is printed on 6, with
end correctly computed.

name: "task1"

start: 2

length: 2

end = 4 Sum

name: "task2"

start = 4

length: 2

end = 6 Sum

task1:

task2:

Figure 1. Arrows denote derivation, faded elements are in-
herited.

The derivation expression of end is recalculated every
time the field is accessed (although the implementation may
cache the last calculated value and reuse it if still valid). The
persistence of derivation is demonstrated on line 7, where
an assignment statement changes the value of the start field.
(Assignment statements use the := symbol instead of a colon
or equals sign.) The effect of the assignment is shown by
referencing task1 on line 8, whose value is output on line 9,
where the derived value of end has been recomputed.

Derivation is a fundamental concept in Coherence. A
derivation is computed lazily upon need, and as will be
seen is guaranteed to have no side-effects, so it is like a
well-behaved getter method in OO languages. A derivation
expression is also like a formula in a spreadsheet cell: it is
attached to the field and continually links the field’s value
to that of other fields. The following example shows more
ways that derivation is used.

10 > task2: task1(name: ”task2”, start = task1.end)
11 = {name: ”task2”, start: 4, length: 2, end: 6}

Line 10 derives the variable task2 as an instance of task1,
meaning that it is a copy with some differences. The dif-
ferences are specified inside the parentheses: a new name is
assigned, and the start field is derived from the end field of
task1. Figure 1 diagrams this example. The length field was
not overridden, and is inherited from the prototype, as shown
by its value output on line 11. Any subsequent changes to
task1.length will be reflected in task2.length. However since
task2.name has been overridden, changes to task1.name will
not affect it. Derivation functions are inherited and overrid-
den in the same manner. Instantiation behaves as in proto-
typical languages [25]. Functions are also treated as proto-
types and their calls as instances (justifying the use of the
same syntax for calling and instantiation). Materializing ex-
ecution in this way has large ramifications on the design of
the language, including the interpretation of names and the
status of source text [9, 10], but those issues are beyond the
scope of this paper.

name: "task1"

start: 1

length: 2

end = 3 Sum

name: "task2"

start = 3

length: 2

end = 5 Sum

task1:

task2:

5

Figure 2. Reaction flow. Bold arrows show the flow. Values
are post-states.

2.1 Reaction
Derivation is bidirectional: changes to derived variables can
propagate back into changes to the variables they were de-
rived from. This process is called reaction, and is used to
handle external input. A Coherence system makes certain
structures visible to certain external interfaces (the program-
mer’s REPL can see everything). All input takes the form
of changes to such visible fields, which react by changing
internal fields, which in turn can react and so on. Multiple
input changes can be submitted in a batch, and the entire
cascade of reactions is processed in a transaction that com-
mits them atomically or not at all. Output consists of reading
visible fields, which are rederived if necessary from the lat-
est changed state. The following example illustrates.

12 > task2.end := 5
13 > task2
14 = {name: ”task2”, start: 3, length: 2, end: 5}
15 > task1
16 = {name: ”task1”, start: 1, length: 2, end: 3}

On line 12 the task2.end field is assigned the value 5,
and the results are shown on the following four lines and
diagrammed in Figure 2. Because task2.end is a derived field
its derivation function reacts to the change. Every function
reacts in some way, if only to declare an error. The Sum

function’s reaction is to adjust its first argument by the same
amount as the result, so that the result is still the sum of the
arguments.2 Thus a change to the end of a task will adjust
its start to maintain the same length: task2.start is changed
to 3. Since task2.start is derived from task1.end, the reaction
propagates to the latter field, and in turn causes task1.start

to be set to 1. The task1.start field is not derived, so the
chain reaction grounds out at that point, leaving the field
changed. If you don’t like the built-in reaction of a function
you override it with your own custom reaction, as follows.

2 The second argument could be adjusted instead. A function is expected to
document such choices.

17 > task1: {
18 name: ”task1”,
19 start: 1,
20 length: 2,
21 end = Sum(start, length)
22 => {start := Difference(end’, length’)}}
23 = {name: ”start1”, start: 1, length: 2, end: 3}

Here task1 has been redefined to include a custom reaction
for the end field on line 22. The symbol => specifies the
reaction for a field, in counterpoint to the use of = for the
derivation, as reaction is opposite to derivation. The reaction
is specified as a set of statements that execute when the field
is changed. Note that while these statements may look like
those in a conventional imperative language, they behave
quite differently. For one thing, they execute in parallel.
Section 2.3 will explain further.

The reaction specified above duplicates the built-in reac-
tion of the Sum function. The changed value of the end field is
referenced as end’, adopting the convention of specification
languages that primed variables refer to the post-state. Non-
primed references in reactions always refer to the pre-state
prior to all changes in the input transaction. The post-state
of end has the post-state of length subtracted from it to com-
pute the post-state of start. The post-state of length is used
rather than its pre-state because it could have changed too,
discussed further below.

2.2 Actions
Reactions can make arbitrary changes that need not be the
inverse of the derivation they are paired with. An example of
this is numeric formating, which leniently accepts strings it
doesn’t produce, effectively normalizing them. An extreme
case of asymmetry is an action, which is a derivation that
does nothing at all and is used only for the effects of its
reaction. Here is a “Hello world” action.

24 > Hello: Action{do=>{
25 consoleQ << ”Hello world”}}
26 > Hello()
27 < Hello world

The Hello action is defined on line 24 with the syntax
Action{do=>...}. This indicates that a variant of the prototype
Action is derived, incorporating a reaction for the do field. A
variant is like an instance, except that it is allowed to make
arbitrary internal changes, whereas instances are limited to
changing only certain public aspects like the input arguments
of a function. Curly braces without a leading prototype, like
those used to create the task1 structure in line 17, are actually
creating a variant of null, an empty structure.

Actions are triggered by making an arbitrary change to
their do field (conventionally assigning it null), which has
the sole effect of triggering the reaction defined on it. A
statement consisting of only a function call will trigger its
action by changing its do field. The Hello action is triggered
in this way on line 26. By encoding actions as the reactions
of do fields we establish the principle that all behavior is

in reaction to a change of state, which is essential to the
semantics described below.

The body of the action on line 25 outputs to the console
with the syntax consoleQ<<”Hello world”. The << symbol de-
notes an insertion statement. It creates a new element within
consoleQ and assigns its value to be the string ”Hello world”. If
the input transaction commits, any elements inserted into the
consoleQ will be printed and then removed from the queue.
Driving console output from a queue preserves the principle
that all behavior is in reaction to a change of state.

2.3 Coherent execution
Enough preliminaries are now in place to explain the seman-
tics of coherent reactions. Say that inside some action we
need to change a task’s end and length, as in the following
code snippet.
28 TaskAction: Action{task, do=>{
29 ...
30 task.end := e,
31 task.length := d}}

The question is, what is the value of the task’s start field
afterwards? One might expect it to be e − d. That would be
wrong if this code were executed in an OO language, where
the reaction of end would be encoded into its set method. The
set method would use the value of length at the time it was
called to calculate start. But length is set after the call, so the
value of start will actually be e−oldLength and the value of
end recalculated by its get method will not be e as expected
but e− oldLength + d.

Obviously it is necessary to set length before end to get
the correct result. But in practice such issues are often far
from obvious. The side-effects of methods (especially those
caused by deeply nested method calls) are often undocu-
mented and subject to change. For example if task were
refactored so that length was instead derived from the differ-
ence of start and end, then any code like ours depending on
the ordering of the side-effects would break. This example
is indicative of the fundamental quandary of imperative pro-
gramming: it is up to the programmer to orchestrate the exact
order in which all events takes place, yet the programmer of-
ten lacks the omniscience and clairvoyance required to do so
perfectly. The result is much complexity and fragility.

Coherence avoids these problems by automatically deter-
mining the correct execution order of all events. In the above
example, the reaction on end will be automatically executed
after the assignments to end and length. A correct execution
order is called coherent, defined as an order in which every
reaction executes before any others that it affects. A reaction
affects another in only one way: if it writes (assigns to) a
location whose post-state is read by the other.

Finding a coherent order may seem at first to be a straight-
forward problem of constraint satisfaction. We form a graph
of reactions whose edges are such effects. A coherent order
is a topological sort of this graph. The problem is that form-
ing this graph is undecidable. Reactions can use pointers:

they are free to do arbitrary computations to compute the lo-
cations which they read and write. For example, TaskAction

might take some user input as a key with which to search all
tasks with a spelling-similarity algorithm, and then modify
the found task. Allowing arbitrary computation of locations
makes the effect graph undecidable in general. Coherence
is not a problem of constraint satisfaction — it is a prob-
lem of constraint discovery. Previously there have been two
alternative solutions: reduce the expressive power of the lan-
guage so that constraint discovery becomes decidable (as in
state machines and dataflow languages), or leave it to the
programmer to deal with.

This paper introduces a new technique that dynamically
discovers effects between reactions and finds a coherent ex-
ecution order. Every reaction is run in a micro-transaction
that tracks both its writes and post-state reads. Reactions are
initially executed in an arbitrary order. Incoherencies are de-
tected as they occur: whenever a reaction writes a location
whose post-state was read by a previously executed reac-
tion. In that case the previous reaction’s micro-transaction is
aborted and it is run again later. The abort cascades through
all other reactions that were transitively affected. This al-
gorithm is essentially an iterative search with backtracking,
using micro-aborts to do the backtracking. If there are no
errors a coherent execution order will found and the whole
input transaction is committed.

Cyclic effects are an error: a reaction can not transi-
tively affect itself. Errors are handled tentatively because
they might be later rolled back — errors that remain at the
end cause an abort of the whole input transaction. The search
for a coherent ordering converges because reactions are de-
terministic (randomness is simulated as a fixed input). It will
terminate so long as the reactions themselves terminate, as
only a finite number of reactions can be triggered.

2.4 The price of coherence
Clearly a naive implementation of coherence will be slower
than hand-written coordination logic in an imperative lan-
guage. But at this point worrying about performance op-
timization would be both premature and misguided. The
history of VM’s shows that clever implementation tech-
niques can yield large speedups. There is a large body of
prior research that could be exploited, from static analysis
to feedback-directed optimization. Coherent code reveals in-
herent parallelism that might be exploited by multicore pro-
cessors. Annotations could partially instruct how to order
reactions (but still be checked for coherence, which is easier
than solving for it). In any case the major problem of inter-
active applications is not CPU performance but programmer
performance — the difficulty of designing, building, and
maintaining them.

Coherence imposes certain constraints on reactions:

1. A field can change at most once per input transaction.
Multiple reactions can change the same field, but only to

the same value. This situation might occur in the above
example if the code snippet also assigned the start field.
That would be OK so long as the value agreed with
what the reaction computed it should be, which would
effectively become an assertion: if the values disagreed
an error would abort the input transaction.

2. All reactions can see the entire global pre-state. Each can
see the pending post-state of the field it is attached to, and
decides how to propagate those changes to other fields.
Each can also see the pending post-state of other fields.
But in no case can a reaction see the consequences of
any changes it makes, because that would create a causal
loop whereby it depends upon itself. Causality violation
is punished by aborting the transaction.

3. A consequence of the above property is that all of the
assignment statements inside a reaction execute as if in
parallel. Causal ordering only occurs between different
reactions.

This paper suggests that much of the manual sequencing
of actions that is the crux of imperative programming is an
accidental complexity [2], and that coherent execution can
handle it automatically, at least in the domain of interactive
applications. But there are cases when sequential execution
is truly essential. For such cases, Coherence offers an encap-
sulated form of imperative programming called progression.

2.5 Progression
Say that we want to execute the previous TaskAction on a
task, but also want to ensure that whatever it does, the task’s
length ends up no more than 10. We could do that by creating
an alternate version of TaskAction that maximized the length
before assigning it. But it is simpler to just execute TaskAction

and then cap the length if it is too large. However reactions
only get a single shot to change each field, and can not see
the consequences of their own actions. Instead we can use a
progression:
32 BoundedAction: Action{task, do=>{
33 prog (task) [
34 TaskAction(task);
35 if (Gt(task.length, 10)) then
36 {task.length := 10}]}}

The prog statement on line 33 takes a parenthesized list
of one or more versioned variables, which here is just task.
That is followed by square brackets containing a sequence
of statements separated by semicolons. The statements can
be read somewhat imperatively: the statement on line 34
executes TaskAction on task, and then the if statement on the
following line checks the resulting length value and sets it to
10 if it is greater. What actually happens is that a separate
version of task is made for each statement. Each statement
changes its version, which then becomes the pre-state of the
next version.

An example reaction flow for BoundedAction(task2) is dia-
grammed in Figure 3. The first version of task2 is modified by

name: "task2"

start = 9

length: 11

end = 20 Sum

name: "task2"

start = 9

length: 10

end = 19

TaskAction

task.length := 11

task.end := 20

if (Gtr(task.length, 10) then

{task.length := 10}

BoundedAction(task2)

Sum

name: "task1"

start: 7

length: 2

end = 9 Sum

name: "task2"

start = 9

length: 10

end = 19

task1:

task2:

Sum

version 1

version 2

Figure 3. Progression reaction flow. All values are post-states.

TaskAction, creating the second version which is modified by
the if statement. The changes made in the first version are en-
capsulated. The change to length gets overridden in the sec-
ond version, and the change to end is discarded because it is
consumed by the Sum reaction. The Sum reaction’s change to
start gets inherited into the second version. The accumulated
changes to start and length in the second version are exported
out of BoundedAction. The exported change to task2.start then
propagates into task1.end. Note that while internal reactions
like Sum execute in each version, any external reactions like
the link to task1 only execute at the very end.

Progressions are encapsulated: the internal unfolding of
events is isolated from the outside. External changes are
visible only at the beginning, and internal changes become
visible externally only by persisting till the end.

Progression depends on the fact that Coherence can make
incremental versions of entire structures like a task. As dis-
cussed in the full version [11] of this paper, the state of a Co-
herence program is a tree. Progressions can version any sub-
tree, such as collections of structures, or even the entire state
of the system. In the latter case, progression becomes a sim-
ulation of imperative programming, capable of making arbi-
trary global changes in each version, and constrained only
from doing external I/O. This simulation also reproduces the
usual pitfalls of imperative programming. Progression is an
improvement over imperative programming only to the ex-
tent that it is quarantined within localized regions of state,
and used as a special case within a larger coherent realm.

Progressions also support looping with a for statement.
The whatif statement is a hypothetical progression with no ef-
fect, executed only to extract values produced along the way.
Hypotheticals function like normal progressions, except that
all emitted changes are silently discarded. Values produced
within a hypothetical can be accessed from its calling con-
text. Hypotheticals turn imperative code into pure functions,
and can thus be used inside derivations. Hypothetical pro-

gressions on the global state can be used for scripting behav-
ioral tests, running the entire system in an alternate timeline.

2.6 Coherence as a model of computation
Derivation and reaction are quite different, yet work well
together. To summarize:

1. Interaction is cyclic: input and output alternate.

2. Output is derivation: external interfaces query visible
state, which may be derived from internal state.

3. Input is reaction: external interfaces stimulate the system
by submitting batches of changes to visible fields, which
react by propagating changes to internal fields. Input is
transactional: all the changes happen atomically or not at
all.

4. Derivation (output) is pure lazy higher-order functional
programming. It executes only upon demand, and can not
have any side-effects. Derivation is discussed further in
the full version [11] of this paper.

5. Reaction (input) is coherent. A set of input changes cas-
cades through reactions until they all ground out into state
changes or errors. Reactions are automatically ordered so
that each executes before any others that it affects. Reac-
tions that transitively affect themselves are an error. Er-
rors abort the entire input transaction.

6. Coherence is dynamic. State can grow and change. Re-
actions can have arbitrary dynamically computed effects,
though they may need to use progressions to do so.

7. Derivation, as pure functional programming, does not
naturally handle the state mutation inherent in input. Re-
action does not naturally handle output, for that would
lead to cyclic effects on inputs. Derivation and reaction
need each other.

8. Coherence is the dual of laziness. They both remove tim-
ing considerations from programming. A lazy function

Object Orientation Coherence

Central metaphor Conversing with messages

(language)

Seeing and direct-manipulation

(vision and fine motor)

Organization Autonomously changing objects Holistically changing tree

Nature of change Sequential Parallel

Modularity via Behavioral substitution Structural substitution

Interface contract Temporal patterns of behavior

(protocols)

Spatial patterns of values

(constraints)

Simulates the other Structure simulated behaviorally

(e.g. Collection protocols)

Behavior simulated structurally

(e.g. trigger fields, queues)

Figure 4. OO contrasted with Coherence.

executes before its result is needed. A coherent reaction
executes before its effect matters.

9. It is often said that functional programs let one express
what should be computed, not how. Coherent reactions
let one express what should be done, not when.

These symmetries are pleasing. Derivation and reaction
are complementary opposites that fit together like yin and
yang to become whole.

3. Related Work
The fundamental issue of this paper, managing side effects,
has been researched so extensively that the related work can
only be briefly summarized in the space available here. A
more detailed consideration is in the full version [11] of this
paper.

Many languages that improve state mutation and event
handling do so by mandating a static dependency structure,
as in dataflow languages [7, 22] and state machines [15].
Such languages do not allow the program to dynamically
choose the target of changes: you can not assign through a
pointer, or update the result of a query. Likewise for Syn-
chronous Reactive Programming (SRP) [1, 5], which was
an inspiration for coherent reaction, and is more general in
some ways. But SRP is intended for embedded systems and
so limits itself to static state spaces that can be compiled into
state machines or gate arrays.

Bidirectional computation is supported in constraint and
logic languages, and in Lenses [14]. Such bidirectional com-
putations are symmetric, whereas the asymmetry of deriva-
tion and reaction allow arbitrary changes to be expressed.

Trellis [8] is a Python library that appears to have been
the first invention of the essential idea of coherent reaction:
using transactional rollback to automatically order event de-
pendencies. While Coherence was developed independently
of Trellis, the prior work on Reactors [13] was a direct in-
fluence. Reactors offer a data-driven model of computation
where data is relational and code is logical rules. It could be
said that Reactors are to logic programming as Coherence is
to functional programming.

Monads [27] simulate imperative programming through
higher-order constructions, allowing some parts of the pro-
gram to remain pure. But all the usual problems of co-
ordinating side effects still exist inside the monadic code.
Functional Reactive Programming (FRP) [6, 12, 18] entirely
abandons the notion of mutable state. The normal order of
cause-and-effect is inverted: effects are defined in terms of
all causes that could lead to them. FRP requires that pro-
grammers learn a new way of thinking about change. Coher-
ence retains the common sense notions of mutable state and
causality, abandoning only the Program Counter.

4. Conclusion
Smalltalk’s design—and existence—is due to the in-
sight that everything we can describe can be repre-
sented by the recursive composition of a single kind
of behavioral building block that hides its combina-
tion of state and process inside itself and can be dealt
with only through the exchange of messages. – Alan
Kay [23]

The conceptual model of Coherence is in a sense opposite
to that of Object Oriented languages. As Alan Kay’s quote
above indicates, the central metaphor of OO is that of mes-
saging: written communication. The central metaphor of Co-
herence is that of observing a structure and directly manip-
ulating it. These two metaphors map directly onto the two
primary mechanisms of the mind: language and vision. Fig-
ure 4 contrasts several other language aspects.

The pattern that emerges strikingly matches the division
of mental skills into L-brain and R-brain [20]. From this per-
spective, OO is verbal, temporal, symbolic, analytical, and
logical. In contrast Coherence is visual, spatial, concrete,
synthetic, and intuitive. This observation raises a tantaliz-
ing possibility: could there be such a thing as an R-brain
programming language — one that caters not just to the an-
alytical and logical, but also to the synthetic and intuitive?

Acknowledgments
This paper benefited from discussions with William Cook,
Derek Rayside, Daniel Jackson, Sean McDirmid, Jean Yang,
Eunsuk Kang, Rishabh Singh, Kuat Yessenov, Aleksandar
Milicevic, Frank Krueger, Thomas Lord, and John Zabroski.

References
[1] G. Berry and G. Gonthier. The synchronous program-

ming language ESTEREL: Design, semantics, imple-
mentation. Science of Computer Programming, 19(2),
1992.

[2] F. Brooks. No silver bullet: Essence and accidents of
software engineering. IEEE computer, 20(4), 1987.

[3] S. Burbeck. How to use Model-View-Controller
(MVC). Technical report, ParcPlace Systems Inc, 1992.

[4] E. Burns and R. Kitain. JavaServer Faces Specification
v1.2. Technical report, Sun Microsystems, 2006.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUS-
TRE: A declarative language for programming syn-
chronous systems. In 14th ACM Symposium on Princi-
ples of Programming Languages, 1987.

[6] G. Cooper and S. Krishnamurthi. Embedding Dynamic
Dataflow in a Call-by-Value Language. In 15th Euro-
pean Symposium on Programming, ESOP 2006, 2006.

[7] J. Dennis. First version of a data flow procedure lan-
guage. Lecture Notes In Computer Science; Vol. 19,
1974.

[8] P. J. Eby. Trellis. June 2009. URL http://peak.
telecommunity.com/DevCenter/Trellis.

[9] J. Edwards. Subtext: Uncovering the simplicity of pro-
gramming. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 505–518. ACM Press, 2005.

[10] J. Edwards. Modular Generation and Customization.
Technical report, Massachusetts Institute of Technol-
ogy Computer Science and Artificial Intelligence Lab-
oratory TR-2008-061, October 2008. URL http://hdl.
handle.net/1721.1/42895.

[11] J. Edwards. Coherent Reaction. Technical report,
Massachusetts Institute of Technology Computer Sci-
ence and Artificial Intelligence Laboratory TR-2009-
024, June 2009. URL http://hdl.handle.net/1721.1/
45563.

[12] C. Elliott and P. Hudak. Functional reactive animation.
In International Conference on Functional Program-
ming, 1997.

[13] J. Field, M. Marinescu, and C. Stefansen. Reac-
tors: A Data-Oriented Synchronous/Asynchronous Pro-
gramming Model for Distributed Applications. In Co-

ordination 2007, Paphos, Cyprus, June 6-8, 2007, Pro-
ceedings. Springer, 2007.

[14] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bidirectional
tree transformations: A linguistic approach to the view-
update problem. ACM Transactions on Programming
Languages and Systems, 29(3), May 2005.

[15] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3), 1987.

[16] D. Harel and A. Pnueli. On the development of reactive
systems. In Logics and models of concurrent systems.
Springer-Verlag New York, Inc., 1985.

[17] G. T. Heineman. An Instance-Oriented Approach to
Constructing Product Lines from Layers. Technical
report, WPI CS Tech Report 05-06, 2005.

[18] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson.
Arrows, robots, and functional reactive programming.
Lecture Notes in Computer Science, 2638, 2003.

[19] J. Hughes. Why Functional Programming Matters.
Computer Journal, 32(2), 1989.

[20] A. Hunt. Pragmatic Thinking and Learning: Refactor
Your Wetware (Pragmatic Programmers). 2008.

[21] J. Järvi, M. Marcus, S. Parent, J. Freeman, and J. N.
Smith. Property models: From incidental algorithms
to reusable components. In Proceedings of the 7th
international conference on Generative Programming
and Component Engineering, 2008.

[22] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.
Advances in dataflow programming languages. ACM
Comput. Surv., 36(1), 2004.

[23] A. C. Kay. The early history of smalltalk. In HOPL-II:
The second ACM SIGPLAN conference on History of
programming languages. ACM, 1993.

[24] S. Mcdirmid and W. Hsieh. Superglue: Component
programming with object-oriented signals. In Proc. of
ECOOP. Springer, 2006.

[25] J. Noble, A. Taivalsaari, and I. Moore. Prototype-Based
Programming: Concepts, Languages and Applications.
Springer, 2001.

[26] K. Pope and S. Krasner. A Cookbook for using
the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Program-
ming, 1, 1988.

[27] P. Wadler. Monads for functional programming. Lec-
ture Notes In Computer Science; Vol. 925, 1995.

[28] M. N. Wegman. What it’s like to be a POPL referee;
or how to write an extended abstract so that it is more
likely to be accepted. ACM SIGPLAN Notices, 21(5),
1986.

